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a b s t r a c t

This paper presents a coupled lumped mass model (CLM model) for the vertical dynamic coupling of

railway track through the soil. The well-known Winkler model and its extensions are analysed and

fitted on the result obtained numerically with a finite–infinite element model in order to validate the

approach in a preliminary step. A mass–spring–damper system with frequency independent para-

meters is then proposed for the interaction between the foundations, representing the contact area of

the track with the soil. The frequency range of track–soil coupling is typically under 100 Hz. Analytical

expressions are derived for calibrating the system model with homogeneous and layered half-spaces.

Numerical examples are derived, with emphasis on soil stiffness and layering. The dynamic analysis of a

track on various foundation models is compared with a complete track–soil model, showing that the

proposed CLM model captures the dynamic interaction of the track with the soil and is reliable to

predict the vertical track deflection and the reaction forces acting on the soil surface.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic models of railway track are widely used for various
applications such as the assessment of stresses on track compo-
nents, noise emission calculation, or the prediction of ground-
borne vibrations. Knothe and Grassie [1] provide a detailed
description of these models and a useful classification still applied
up to the present time. The assumption of uniform subgrade
(railpads and ballast supposed to be continuous along the track)
or discrete supports, the adoption of an Euler–bernoulli beam,
Timoshenko beam, or a 3D representation define the degree of
complexity of the model, depending on the application. For
example, the replacement of discrete supports by a continuous
layer allows to faithfully to establish the vertical rail deflection
solution, whereas the discrete disposition has a non-negligible
influence on the definition of the soil loads (sleeper excitation
frequency depending on vehicle speed). This particularity has
been underlined by Krylov in his ground vibrations prediction
model [2].

Another aspect of track modelling is the recognition of the
track–soil coupling. Naturally, the dynamic response of the track
is largely affected by soil foundation, and track models with rigid
foundations cannot be considered accurate. In the case of con-
tinuous subgrade, Winkler foundation is totally sufficient. For
example, Dieterman and Metrikine [3] propose a continuous
ll rights reserved.
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model for the rail, using an equivalent elastic foundation for both
the ballast and the soil. A forward Fourier transform along the
track is adopted to evaluate the coupling between the track and
the soil, the latter being modelled as a homogeneous half-space.
An equivalent stiffness is derived, showing its dependence on
frequency for high-speed loads. Winkler foundation is also used in
discrete supports. Zhai and Sun [4] have proposed a detailed
model for vertical vehicle–track dynamics, with a complex repre-
sentation of the ballast, but considering the soil as a Winkler–
Voigt foundation. Sarfield et al. [5] and Rücker [6] were the first to
study the interaction between the sleepers and the soil through a
simple model, without taking into account the ballast. The
sleepers were directly connected to the ground, and the impor-
tance of such coupling was emphasized for high-speed lines.
Analysing the influence of the number of sleeper couplings and
soil configuration, Knothe and Wu [7] established that track–soil
coupling essentially intervenes in low- and mid-frequency ranges,
typically up to 100 Hz. The main conclusion is that the Winkler
foundation cannot be used as a half-space model to represent the
subgrade in the track model.

Winkler and generalized Winkler models are used however in
many geotechnical applications, especially for the dynamic impe-
dance of foundations. Gazetas [8] demonstrated the real efficiency
of single degree-of-freedom systems for soil–foundation interac-
tion problems. Advanced representations have been afterwards
proposed, as for example the models developed by De Barros and
Luco [9], their main difficulty being the identification of model
parameters, often performed by fitting results from numerical
models or experimental studies. Ju [10] proposed a least-squares
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method for calculating equivalent foundation parameters, using
finite element analysis results. In these approximative represen-
tations, it is possible however to take into account the effect of
nearby sources. Mulliken and Karabalis [11] extended this
approach and proposed a discrete system for predicting the
dynamic interaction between adjacent rigid surface foundations.
As pointed out by the authors, the main difficulty was the
modelling of time lag effects associated with wave propagation.
A modified Wilson�y method was proposed for incorporating the
coupling between foundations. Time lag is estimated through
empirical formulae and is directly included in the integration
scheme. More sophisticated models exist, such as Pasternak’s
model and its extensions. The development follows Winkler’s
hypothesis, according to which ‘‘the deflection at any point on the
surface of an elastic continuum is proportional only to the load
being applied to the surface, and is independent of the load
applied to any other points on the surface’’ [12]. In addition to the
parameters defining the subgrade reaction, supplementary para-
meters are included for the continuity of adjacent displacements.
Various papers (for example [12,13]) present this formulation as
an interesting alternative to the simpler foundation models.

All these approaches aim at solving the problem of soil–
structure interaction, without the need for excessive computa-
tional effort. A calibration is therefore necessary, ideally with the
help of analytical or numerical solutions. The finite element
method (FEM) provides an interesting alternative to the boundary
element method (BEM) and offers the advantage of including
complex geometry without difficulty. The main constraint lies in
the definition of non-reflecting boundaries at the border of the
domain. Recently, Kouroussis et al. [14,15] proposed an efficient
3D model, based on the finite–infinite element method (FIEM).
Lysmer’s viscous boundaries [16,17] were associated to the
infinite elements to increase their efficiency, and to mimic
infinity, avoiding reflections at model boundaries. It was shown
that the FIEM provides good performance for time domain
analysis with small dimensions of the region of interest. Based
on this approach, a prediction model for calculating ground
vibrations generated by railway traffic was proposed [18]. The
track–soil coupling could be incorporated into that numerical
approach, but would involve substantial computational effort.

This paper presents a multi-foundation system based on
Lysmer’s analogue model, with interconnection elements for the
foundation-to-foundation coupling. First, the dynamic response of
the foundation is analysed, in order to verify the effectiveness of
the discrete model in reproducing soil impedance within the
range of accuracy required for the track–soil system. For the
multi-foundation system, a method is presented for establishing
an efficient manner in which to fit the discrete model parameters.
The proposed approach is then validated in low frequency where
the influence of the subgrade is not negligible. The purpose of the
discrete model is to be incorporated in an existing vehicle–track
model [18]. Parametric results are produced, with emphasis on
soil and ballast stiffness, and soil layering. A computationally
efficient simplified representation of the subsoil can therefore be
used for vehicle–track dynamics, offering a physical representa-
tion of the soil coupling in a track model.
x

z

Fig. 1. Vehicle moving
2. Model synopsis

Developing a discrete model for the soil and including it in the
vehicle–track model is advantageous for various reasons. The
main advantage is the possibility of applying the proposed
condensed version of the soil to both time domain and frequency
analysis. As it is important to correctly evaluate the forces
induced by the vehicle on the rail, the track impedance must be
as accurate as possible, taking into account the soil flexibility.

The proposed vehicle–track model is based on a multibody
model for the vehicle moving on a flexible track. The latter
combines a finite element model for the rail and a lumped mass
model for the compound railpads–sleepers–ballast (Fig. 1). Only
the vertical motions are studied in this model, so a 2D model is
derived for the track. According to [1], this representation is
sufficient to predict the rail deflection, to calculate the forces
acting on the soil surface, and to evaluate the ground vibrations
induced on the neighbourhood by the passing of railway vehicle.
Additional information about the modelling can be found in [18].

In order to present a rigorous analysis, vertical track recep-
tances will be studied considering the track on a flexible founda-
tion. These receptances are defined as the frequency response
function between the vertical displacement of the rail above a
sleeper, and the vertical force applied at the same point or in front
of another sleeper. As the FIEM model approach is based on the
time domain simulation, the time evolutions of rail motion are
also of interest, the decay function being approximated as
follows:

finput ¼
0 if tot0

Ae½�ðt�t0Þ=td � if tZt0

(
ð1Þ

where parameter A imposes the maximum amplitude and td is
adjusted to cover an excitation with proper frequency range;
t0a0 for verifying the causality of the response. Track recep-
tances are thus calculated for the time response, using the Fourier
transform.

Since railway excitation is often considered small compared to
other dynamic excitation (earthquake, explosions, etc.), soil beha-
viour can reasonably be assumed linear (under the shear strain of
10�5, non-linear behaviour is generally neglected [19]). The
domain of ground vibrations and vibratory nuisances is typically
in the range 0–80 Hz, according to the DIN standard references
[20,21] widely used in the evaluation of vibratory nuisances and
discomfort, and of potential stresses induced on structures. For
this frequency range, we assume t0¼0.05 s and td¼0.001 s (the
value of A is naturally set to unity). For higher frequencies, td can
reach up to 0.0001 s.
3. Winkler foundation: state of the art and analysis

The Winkler–Voigt and Lysmer’s analogue models are widely
used in soil modelling and their effectiveness has been demon-
strated through various applications (pile foundation impedance,
embedded structure behaviour, etc.). The direct vibrations of a
foundation can be represented by a lumped single dof system,
v0

on a flexible track.
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described by

mf €xþdf _xþkf x¼ f ðtÞ, ð2Þ

where x represents the motion of the foundation under a vertical
load f(t), considering only the vertical vibrations of the founda-
tion. Parameters mf, kf and df are the equivalent mass, stiffness,
and damping of the vertically oscillating system, respectively. The
vertical impedance, defined as the ratio of the input force FðoÞ to
the foundation response XðoÞ, is equal to

KvðoÞ ¼ kf�o2mf þ jodf : ð3Þ

The real part here depends on the circular frequency o, as
observed in reality. Notice that parameter mf does not have any
link with the foundation mass.

These parameters can either be fixed, or variable with fre-
quency, according to the model layout representation. If mf¼0 and
df¼0 and kf constant, we find Winkler’s concept for static reaction.
With a non-negative value of df, the energy loss is introduced
considering a viscoelastic soil behaviour. Parameter mf allows to
adequately account for the variation of the impedance real part
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Fig. 2. Comparison between Lysmer’s analogue and numerical vertical impedances (cir

stiffness increasing with depth. (c) Layered soil with stiffness decreasing with depth.
with the frequency (Lysmer’s analogue model). In a general
manner, these parameters require appropriate values, deduced
from Young’s modulus E, Poisson’s ratio n, density r and viscous
damping b of the half-space.

Typical results are illustrated in Fig. 2, showing the vertical
impedance of a rigid circular massless surface foundation in a
viscoelastic homogeneous soil, a layered soil with stiffness
increasing with depth, and layered soil with stiffness decreasing
with depth, respectively. The last two configurations are simply
inverted (last layer characteristics instead of first layer ones, and
so on), with extreme Young’s moduli E varying from 61 to
465 MPa. The first configuration corresponds to an equivalent
homogeneous half-space (E¼146 MPa). A distinction between the
real (in-phase) and imaginary (901 out-of-phase) parts is made,
with emphasis on frequency dependency of the dynamic stiffness
and the damping coefficient. Besides frequency evolution, the
dimensionless frequency:

a0 ¼
oR

cS
ð4Þ
0 20 40 60 80 100
0

2

4

6
x 107

Frequency  [Hz]

V
er

tic
al

 im
pe

da
nc

e 
[N

/m
]

90° out−of−phase part

 FIEM results
Lysmer’s analogue fitting

0 0.25 0.5

0 20 40 60 80 100
0

2

4

6
x 107

Frequency  [Hz]

V
er

tic
al

 im
pe

da
nc

e 
[N

/m
]

90° out−of−phase part

 FIEM results
Lysmer’s analogue fitting

0 0.25 0.5 0.75

0 20 40 60 80 100
0

1

2

3

4
x 108

Frequency [Hz]

V
er

tic
al

 im
pe

da
nc

e 
[N

/m
]

90° out−of−phase part

 FIEM results
Lysmer’s analogue fitting

0 0.25

Dimensionless frequency a0 [−]

Dimensionless frequency a0 [−]

Dimensionless frequency a0 [−]
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is also used to allow the comparison with the literature: dimen-
sionless graphs are often expressed in function of the shear wave
velocity cS (for layered soils, cS is that of the first layer properties)
and of the radius R of the circular rigid foundation. It appears
clearly that Lysmer’s analogue model can be applied with good
accuracy for these configurations: the in-phase curves follow a
decreasing second degree parabola with increasing frequency and
the out-of-phase curves show a linear evolution (Im½Kv�=o is
nearly perfectly constant). Static stiffnesses can easily be derived,
and compared to [8,22]

kf ¼
2RE

ð1�n2Þ
: ð5Þ

The following observations are noteworthy:
�
 It appears that the use of ‘‘added masses’’ adequately takes
into account the decrease in frequency of stiffness coefficients.
Its effect produces dynamic stiffness coefficients of the form
kf�mfo2, for a reasonable approximation for low and medium
frequencies.

�
 Some fluctuations are observed for layered soils, but the

general trend remains (Figs. 2(a) and (b)).

�
 The static stiffness essentially depends on the first layer

characteristics.

�
 At relatively low frequencies, the imaginary part of the

impedance is very limited in the second case (Fig. 2(b)) and
the real part has the main influence on the impedance function
(the phenomenon is described in [8]). For the situation with
stiffness decreasing with depth, the imaginary part rapidly
increases and reaches up a constant value before following a
linear growing (Fig. 2(c)).

The same observations can be made for a rectangular surface
2a�2b (with a4b), and the empirical formula [22]

kf ¼
Eb

ð1�n2Þ
1:55

a

b

� �0:75

þ0:8

� �
ð6Þ

gives a good estimation of the static stiffness.
4. Coupling between foundations

Having verified the effectiveness of Lysmer’s analogue model
for reproducing the dynamic impedance of a massless foundation,
the formulation is extended to coupled foundations. A coupled
lumped mass model (CLM model) is used to determine the
relationship between an applied loading function on a rigid
foundation attached to an elastic medium, and the corresponding
displacement function of the adjacent rigid foundations.

4.1. Multi-foundation coupled lumped mass approach

The proposed model is schematically illustrated in Fig. 3, and
consists of discrete masses, springs, and dampers. From the initial
Lysmer’s analogue model for each foundation (that is to say
sleeper-through-the ballast contact area), each foundation is
linked with the adjacent ones by springs (parameter kc) and
f 
mf mmf

xi (t)xi−1 (t)xi−2 (t)

df dfkf kfkf

dc dc

kc kc

Fig. 3. Multi-foundation model for soil–foundatio
dampers (parameter dc). Considering that the force is applied on
the ith-element, the equations of motion can be written as

mf €xiþdf _xiþkf xiþdcð _xi� _xi�1Þþkcðxi�xi�1Þ

þdcð _xi� _xiþ1Þþkcðxi�xiþ1Þ ¼ f ðtÞ, ð7Þ

mf €xjþdf _xjþkf xjþdcð _xj� _xj�1Þþkcðxj�xj�1Þ

þdcð _xj� _xjþ1Þþkcðxj�xjþ1Þ ¼ 0 ð8ja iÞ: ð8Þ

The Fourier transform can be applied, given the following
system, if we assume that the index 0 is related to the loaded
mass response (i¼0 and j¼�1 to 1Þ:

. . .

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�X�2

�ðkcþ jodcÞX�3�ðkcþ jodcÞX�1 ¼ 0, ð9Þ

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�X�1

�ðkcþ jodcÞX�2�ðkcþ jodcÞX0 ¼ 0, ð10Þ

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�X0�ðkcþ jodcÞX�1�ðkcþ jodcÞX1 ¼ F, ð11Þ

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�X1�ðkcþ jodcÞX0�ðkcþ jodcÞX2 ¼ 0, ð12Þ

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�X2�ðkcþ jodcÞX1�ðkcþ jodcÞX3 ¼ 0, . . . ð13Þ

where Xj and F represent the spectra of xj(t) and f(t), respectively.
By summing these equations, we obtain

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�
X1

j ¼ �1

Xj�ðkcþ jodcÞ

�
X1

j ¼ �1

Xj�ðkcþ jodcÞ
X1

j ¼ �1

Xj ¼ F: ð14Þ

The final result appears directly, considering the impedance
between all the foundations and the single load acting on a
contact area:

FðoÞP1
j ¼ �1 XjðoÞ

¼ kf�o2mf þ jodf : ð15Þ

If we suppose that the unloaded responses located far from the
input force have a small influence on the total sum of Eq. (14), the
latter can be rewritten as

FðoÞPn
j ¼ �n XjðoÞ

¼ kf�o2mf þ jodf , ð16Þ

where 2nþ1 is the number of rigid areas that intervene in the
coupling (n¼20 seems to be sufficient). Deriving simple equa-
tions, such as Eq. (16), is the key for a rigorous and relatively
simple fitting, with emphasis on the properties of the founda-
tions, according to the form of the analytical functions. The same
analogy can be made for another function, considering the
alternating summation of Eqs. (9)–(13), to obtain the series:

½ðkf þ2kcÞ�o2mf þ joðdf þ2dcÞ�
X1

j ¼ �1

ð�1ÞjXjþðkcþ jodcÞ

�
X1

j ¼ �1

ð�1ÞjXjþðkcþ jodcÞ
X1

j ¼ �1

ð�1ÞjXj ¼ F: ð17Þ
(t)
mfmff

xi+1 (t) xi+2 (t)

dfdfdf kfkf

dcdc

kckc

n and foundation-to-foundation interaction.
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By limiting the number of terms to 2nþ1, we finally obtain

FðoÞPn
j ¼ �nð�1ÞjXjðoÞ

¼ ðkf þ4kcÞ�o2mf þ joðdf þ4dcÞ: ð18Þ

Notice that, due to the symmetry of the problem,

Xn

j ¼ �n

XjðoÞ ¼ X0ðoÞþ2
Xn

j ¼ 1

XjðoÞ ð19Þ

Xn

j ¼ �n

ð�1ÞjXjðoÞ ¼ X0ðoÞþ2
Xn

j ¼ 1

ð�1ÞjXjðoÞ ð20Þ

only one side of contact area set can be investigated.
Parameters can be easily updated from a numerical model, in

this instance a 3D FIEM model, considering a quadratic function
for real parts and a linear function for the imaginary one, for both
Eqs. (16) and (18), as far as the numerical responses follow these
specific curves. In particular, kf and kfþ4kc represent the static
component of the total sum and the alternating summation,
respectively.
4.2. Particularity of the cross damping coefficient

To estimate the time lag, Mulliken and Karabalis [11] have
proposed a formula initially available for square foundations.
Applied to rectangular 2a�2b foundations, this formula gives a
good estimation of the time delay:

t¼ 3

4

ðdþb=2Þ

cS
ð21Þ

with d the sleeper spacing and cS the shear wave velocity (t is
around 0.003–0.004 s in most typical railway/soil configurations).
In order to avoid procedures for adding the time lag, due to wave
propagation in the soil, directly to the numerical scheme, analyses
have been conducted that show that the damping term dc can be
negative.

Let us consider a part of the CLM model (Fig. 4) represented by
the damped 1–dof model, with the spring kf, the damper df and
the mass mf for the foundation, and the spring kc and the damper
dc for the coupling between foundations. The displacement of the
two foundations is described by x1 and x2. The transmissibility
function between these two displacements can be written as

X2

X1
¼

kcþ jodc

ðkf þkcÞ�o2mf þ joðdf þdcÞ
: ð22Þ

The term joðdf þdcÞ in the denominator plays the role of phase lag
and the term jodc in the numerator is related to a phase lead. The
analysis of Eq. (16) essentially imposes the values of kf, df and mf.
In soil motion, the time lag is non-negligible and the value of df

could not be sufficient. It appears that an additional delay is
introduced by a negative damper dc into the system, transforming
the time lead to an additional time lag. Impedance defined by
Eq. (18) is used to adjust the other parameters, and it reveals this
particularity of dc. At low circular frequencies, the delay induced
mf
x1 (t) x2 (t)

dfkf

dc

kc

Fig. 4. Two-foundation model for soil interaction.
by dc value can be estimated by

tc ¼�dc
1

kc
�

1

kcþkf

� �
: ð23Þ

When structural damping is considered in the multi-founda-
tion system, the global dashpot term dc contains the contribution
of the delay and also the contribution of the material damping
existing between the two contact areas, and may be negative.
A condition to avoid instability is to verify that the damping
matrix of the whole system is positive definite. If the negative
damping is larger than the inherent structural damping, the
response will naturally diverge. Therefore, as the distance d

representing the sleeper bay is small (0.60–0.72 m), the damping
dc magnitude will generally be small. For larger distances, a
divergence inevitably appears.

4.3. Parametric analysis

Before applying any fitting between this model and a numer-
ical model (in this case, the FIEM model), a sensitivity analysis is
performed. Fig. 5 displays the results obtained with an excitation
defined by Eq. (1) by varying, one parameter at a time, the
stiffnesses kf and kc, the damping coefficients df and dc, and the
mass mf, plotting time histories and soil receptances (loaded
surface and second unloaded surface), and also the maximum
amplitude with the distance.

Several comments can be made on each parameter, as far as
the results shown in these figures are concerned:
�
 The mass mf has an obvious influence on the resonance
frequency, which can be approximated by

fR ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf þ2kc

mf

s
: ð24Þ

The maximum amplitude is identical for the loaded surface in all
cases. However, the maximum amplitude level with the distance
increases as mass increases. From these results (1st row, 2nd
column), there seems to be a time lag with greater mass.

�
 The decrease in foundation stiffness kf induces an increase in

maximum amplitude with distance. The static stiffness of each
response obviously diminishes. The time signal seems to be
‘‘amplified’’ when stiffness values are small, the effect being
more pronounced with the distance.

�
 The foundation damping df has a strong influence on the

maximum amplitude, increasing it equally whatever the dis-
tance. Each signal is also damped, with a limit of stability (here
df¼800 kN s/m) with a negative dc imposed.

�
 The coupling stiffness kc also affects the maximum amplitude

of the signal. For the loaded and the first unloaded surfaces,
the more important the stiffness is, the more the amplitude
level diminishes. For the further surfaces, it is the opposite
effect. The time lag is imposed by this parameter if the
damping dc is fixed (see Eq. (23)).

�
 The maximum amplitude is almost independent of the damp-

ing dc. Here also a limit of stability exists.

5. Numerical example

To validate the proposed model, the track receptance is calcu-
lated in various cases, as it gives a picture of the rail head
displacement where a force (typically the vehicle loads) acts on a
rail point. The flexible rail, defined by its Young modulus Er,
geometrical moment of inertia Ir, area Ar and density rr , is described
by the finite element method. A regular spacing d of the sleepers (of
mass m) has been considered. Railpads and ballast are modelled by
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springs and dampers : kp and dp for the railpad, kb and db for the
ballast. The soil condensed form is added under the track, as
presented in Fig. 6, with the parameters mf, kf, kc, df and dc.

Track receptances Hi1ðoÞ are related to the excitation f(t)
applied on the rail at point 1 and the responses at point i (from
50 to 5 in the diagram of Fig. 6). Due to the finite length of the track
Studied Loaded surface
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Fig. 5. Summary of the par
(bounded track), the modelling must be done with caution to avoid
border effects, as highlighted by Knothe and Wu [7], who confirm
that five sleepers on both sides intervene in the rail deflection. To
be sure, a minimum of 10 sleepers is necessary on both sides of the
region of interest (length of the track sufficient to avoid any
interference due to the extremities of the rail). On the other hand,
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Fig. 5. (continued)
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the discretisation is less restrictive and two beam elements by
sleeper bay are sufficient to model track dynamics [23].

For the validation, a numerical model is established, based on
the track coupled with a numerical model of the soil (the ballast
links the sleepers and the soil surfaces completely). The soil is
modelled with the FIEM approach, according to [14], and the
ballast reactions are applied directly on a rectangular rigid surface
representing the sleeper area.
5.1. Validation on a typical example

The first example is based on a homogeneous half-space.
Dynamic parameters are presented in Table 1, as well as the
discrete CLM model parameters obtained from the calibration
presented in Section 4. This configuration corresponds to a Belgian
site investigated in the past (at Mévergnies, along the high-speed
line Brussels–Paris/London and near the French border).
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Table 1
Mévergnies site (Belgium)—half-space configuration.

E r n cP cS b

129 MPa 1600 kg/m3 0.3 330 m/s 177 m/s 0.0004 s

mf df kf dc kc

380 kg 680 kN s/m 72 MN/m �155 kN s/m 160 MN/m
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Fig. 7. Comparison between coupled lumped mass model (dashed line) and FIEM numerical results (solid line) for a typical half-space. (a) Time evolution (loaded surface).

(b) Time evolution (unloaded surface—1st). (c) Time evolution (unloaded surface—2nd).

G. Kouroussis et al. / Soil Dynamics and Earthquake Engineering 31 (2011) 1711–17231718
Fig. 7 presents a preliminary result, considering the vibrations
of the first five rectangular contact areas (the loaded area and the
two adjacent ones on each side) and based on the comparison of
the soil motions in both models when the force (1) acts directly
on the rectangular ground surface 2.5 m�0.285 m. Excellent
agreement is observed between the simplified model and the
rigorous one, especially for the area near the excitation. It would
be ideal and optimistic to find a perfect correspondence for all the
contact areas. It is well known that the nearby surfaces play the
major role on the coupling, as expected by Rücker [6]. It seems
that very good estimates of the vertical stiffness and coupling of
soil modelling can be made by the CLM model.

Adding the track on this soil representation (Table 2), the track
receptance can be calculated. Fig. 8 displays the results in terms
of amplitude and phase, for the direct receptance H11 and the two
indirect receptances H21 and H31, up to 350 Hz. Two resonances
appear in the curve, in accordance with the track modelling: the
first, around 65 Hz, corresponds to the vertical motion where the
rail and sleepers vibrate in-phase. The second, at 325 Hz, corre-
sponds to the vertical motion where rail and sleepers mainly
vibrate out-of-phase. The developed CLM model gives results very
close to the numerical ones, with an undeniable benefit in
computational time (a reduction of more than 90%).

5.2. Validation for soft soil

The second validation concerns the influence of the stiffness of
the soil, compared to that of the track. Obviously, the track
stiffness, and more particularly its ratio to soil stiffness plays an
important role in the track receptance curves. The following
analysis allows to establish its influence by varying the soil
stiffness: E¼10, 155 and 750 MN/m2 for soft, medium, and stiff
soil, respectively. The other parameters are set at r¼ 1540 kg=m3,
n¼ 0:25 and b¼ 0:0004 s. Table 3 gives the correspondence
between the soil dynamic parameters and those related to the
CLM model (coupled lumped model).
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The results are compared also with those obtained for track on
Lysmer’s analogue foundation (uncoupled lumped model). The
railpad and ballast parameters are slightly different from those in
the previous example (kp ¼ 90 MN=m, dp¼30 kN s/m, kb¼120 MN/
m, db¼40 kN s/m) with a sleeper spacing d¼0.72 m. In this case,
vertical track resonance frequencies are 124 and 289 Hz. This
configuration allows to stress the low frequencies by amplifying
the first resonance to the detriment of the second one.
Table 2
Parameters of the track of Mévergnies.

Er Ir rr Ar d

210 GPa 3055 cm4 7850 kg/m3 76.9 cm2 0.6 m

kp dp kb db m

120 MN/m 4 kN s/m 47 MN/m 72 kN s/m 150 kg
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Fig. 8. Track receptances amplitude (left) and phase (right) for the site of Mévergnies

model (solid lines). (a) Amplitude—in front of sleeper 1. (b) Phase—in front of sle

(e) Amplitude—in front of sleeper 3. (f) Phase—in front of sleeper 3.
Fig. 9 presents the expected results for the direct receptance
H11 and the adjacent indirect receptance H21. The model with
Lysmer’s analogue foundation is accurate for stiff soil (compared
to the ballast stiffness) only (difference less than 0.5 dB). This
explains why the hypothesis of track–soil decoupling proposed by
Kouroussis et al. [18] is only valid if the foundation stiffness kf is
sufficient compared to that of the ballast:
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�
 Under 10 Hz, no difference appears with the FIEM results. In
particular, the static stiffness is accurately captured. The
decrease in amplitude with frequency in this frequency range
is also captured while Lysmer’s analogue foundation model
fails to predict this trend. Up to 50 Hz, the difference in
amplitude is negligible.

5.3. Validation for various ballast stiffness

The ballast stiffness also plays a role in the track receptance
and in the track–soil coupling. The soil stiffness is imposed here at
155 MN/m2 and three values are chosen for the ballast stiffness:
kb¼50 MN/m, kb¼120 MN/m and kb¼600 MN/m. The other track
Table 3
Coupled lumped mass model parameters for various soil.

Studied case

(MN/m2)

mf (kg) df

(kN s/m)

kf

(MN/m)

dc

(kN s/m)

kc

(MN/m)

Medium soil (E¼155) 758 1120 69 �218 157

Hard soil (E¼750) 1396 2550 317 �300 724

Soft soil (E¼10) 94 180 5 �30 15
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Fig. 9. Direct (left) and indirect (right) track receptances for: (a) soft soil (E¼10 M
and soil parameters are identical to the preceding ones. The first
vertical track resonance frequency varies from 82 Hz to 228 Hz.

Fig. 10 shows the track receptances for each case and allows to
compare configurations between each other. The difference between
FIEM model and CLM model results is clearly low in the frequency
range concerned by track–soil coupling (0–100 Hz). These analyses
validate the use of the approximated model for a large ballast
stiffness range, compared to classical track models without con-
sidering the soil influence. These models can present a difference
reaching up to 10 dB, despite of a medium soil configuration. For all
cases, the approximation is very good compared to the receptances
calculated for a Lysmer’s analogue foundation.

The above results show that the proposed CLM model success-
fully predicts the track–soil dynamic behaviour, for any track
(ballast) stiffness. The next section deals with model validation
for layered soil.

5.4. Validation for layered soil

The layered configuration proposed in Section 3 is presented in
detail in Table 4. An advanced soil configuration is proposed,
based on the analysis performed by Degrande et al. [24] for a
railway site in Brussels.
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N/m2), (b) medium soil (E¼155 MN/m2), and (c) stiff soil (E¼750 MN/m2).
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Fig. 10. Direct (left) and indirect (right) track receptances for: (a) soft ballast (kb¼50 MN/m), (b) medium ballast (kb¼120 MN/m), and (c) stiff ballast (kb¼600 MN/m).

Table 4
Haren site (Belgium)—layered soil case.

Layer d E (MPa) r (kg/m3) n cP (m/s) cS (m/s) b (s)

1 1.2 61 1876 0.13 184 120 0.0004

2 1.8 m 84 1876 0.13 215 170 0.0004

3 1.0 m 287 1876 0.13 400 260 0.0004

4 1.0 m 373 1876 0.27 500 280 0.0004

5 1.0 m 450 1876 0.33 600 300 0.0004

6 1 465 1992 0.48 1458 286 0.0004

mf df kf dc kc

5003 kg 300 kN s/m 60 MN/m �45 kN s/m 81 MN/m
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Fig. 11 presents the results of the validation, including the
prediction using Lysmer’s analogue model for the foundation. This
results addition allows to quantify the gain brought by the
foundation coupling in the approximated model. Here, we do
not only consider the indirect receptance of the rail point in front
of the adjacent sleeper, but also the other points up to the fifth
sleeper. The first vertical track resonance frequency is around
70 Hz. The most significant discrepancies between models appears
in the case of layered configuration, where it is sometimes difficult
to adjust the parameters in order to recover the soil resonances
(here around 15 Hz and 40 Hz), otherwise easily calculated by [25]

fk,n ¼ ð2n�1Þ
ck

4d
ð26Þ

where k subscript is related to the body waves (P or S) of the upper
layers. In the case of n¼1 and for P-waves, this resonance
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Fig. 11. Direct and indirect track receptances for the site of Haren (layered case). (a) In front of sleeper 1. (b) In front of sleeper 2. (c) In front of sleeper 3. (d) In front of

sleeper 4. (e) In front of sleeper 5.
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frequency corresponds to the natural oscillation frequency of free
vertical response of the soil surface [8]. Results show that the CLM
model predicts the first resonance accurately. In all curves, the static
stiffness for each rail point is well represented by the CLM model; the
simple model (Lysmer’s analogue foundation) is less accurate. It
appears that, if we progressively move away from the applied load
(in front of sleepers 4 and 5), the amplitude level strongly diminishes.
Difference for points far from the load seems to be more important,
but the amplitude is approximately 20 dB smaller than for the direct
case. The influence is therefore negligible.
6. Conclusions

An efficient discrete model for track/soil coupling is proposed,
as an extension of the well-known Lysmer’s analogue model. A
first step consisted in analysing the efficiency of the discrete
single degree-of-freedom model, comparing the vertical impe-
dance with equivalent numerical solutions, and showed that very
good results can be obtained by these models for ballast–soil
interaction. Compared to Winkler’s model, adding an equivalent
mass allows to consider the part of the soil mass that participates
in the foundation vibration.

An alternative to Lysmer’s analogue model has been proposed,
considering the coupling between foundations, in terms of their
contact surface areas. The coupled lumped mass model (CLM
model) of n degrees of freedom considers the coupling between
all the sleeper areas by interconnecting them with springs and
dampers.

The key conclusions can be summarized as follows:
�
 The fitting is proposed through simple analytical relations like
those related for the Lysmer’s analogue model (quadratic
frequency evolution of the real part and linear evolution for
the imaginary one). A parametric study was performed to
adjust some parameters for better calibration.

�
 Very good results are obtained by fitting the CLM model with

numerical results obtained by the FIEM modelling of the soil,
in various cases (homogeneous soil and layered media) in the
frequency range 0–80 Hz.

�
 The soil wave propagation induces non-negligible time lag,

which can be assessed with a negative dashpot term placed
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between the masses. By adding the structural damping, the
stability of the integration scheme is preserved if small
distances are considered (which is the case of railway track).

The proposed model, associated to a track model, has been
validated in various ballast and soil conditions, considering
ballast and soil flexibility, and soil layering. Good agreement with
rigorous FIEM results was obtained.
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